Difference between revisions of "Study Guide:OBS"
Claus Faber (talk | contribs) |
Claus Faber (talk | contribs) |
||
Line 45: | Line 45: | ||
==== Subsequent messages ==== | ==== Subsequent messages ==== | ||
− | In Subsequent calls the calling station part can be ommited. | + | Once contact is established, you stay in contact, even if you don't talk to each other. This means: You know that the other station knows of you and counts on you to pick up conversation any time. In Subsequent calls the calling station part can be ommited. |
+ | |||
+ | When a controller (or aircraft) transmits a message to a station it is very important that the receiving station acknowledge the message and reads back any required parts.. If the receiving station does not acknowledge, the transmitted message is considered as a lost transmission and the sender should resend the message or check if the receiving station got the message. Items that must always be read back in full are all clearances (including altitudes, headings, speeds, radials etc), runway in use, altimeter setting (QNH or QFE) and transition level, and all frequencies. For a controller, this is extremely important to remember, since if a pilot's readback is incorrect, the controller has to ask for confirmation, i.e a new readback. There are also items that should not be read back to reduce unnesessary radio transmissions. In short, this includes everything not mentioned above, but a few examples are: wind, temperature and other weather information (except altimeter settings) and traffic information in detail. When giving an instruction the Callsign is stated at the beginning, when reading back you usually add it at the end of your transmission (although you are allowed to do it at the beginning too). <br><br> ''Examples''''':''' | ||
'''LOWW_APP:''' AUA251, turn left heading 290, descend Altitude 5000 feet, QNH 1019. | '''LOWW_APP:''' AUA251, turn left heading 290, descend Altitude 5000 feet, QNH 1019. |
Revision as of 11:02, 17 April 2012
Overview: Study Guide - Next: Study Guide:Delivery
Introduction
This chapter of the Study Guide has been designed to give you all the information needed to start monitoring as Observer (OBS) with the intention to become a controller. It contains the fundamental basics so that you can understand, what happens.
Radio Communication - Basics
Because communication is crucially important for Air Traffic Control a fixed format and syntax is used, in order to minimize the risk of misunderstandings and to keep messages short. Worldwide English is the primary language in use, however in most countries you are also allowed to use the local language. In Austria VFR flights can choose their language whereas IFR flights are all conducted in English. Link: Buchstabiertabelle
Basic Rules
In order to achieve the goals set above the following rules important:
- Listen before you talk
- It's impossible for two radio stations to transmit on the same frequency at the same time. If this is done, the radio signal will be blocked and this will result in a nasty noise on the frequency. Therefore it's important that every station monitors the frequency for about 5 seconds before transmitting, to make sure there’s no ongoing radio traffic. If you hear an ongoing conversation, wait until the conversation is over before you begin to transmit. Don’t start your communication if there is a read-back expected on the last transmission even if there is a short pause.
- Think before you talk
- The radio traffic flow should be as smooth as possible. To achieve this it's vital to "think first" before transmitting so that a clear, concise and uninterrupted message can be sent.
- As far as possible use standard phraseology and syntax
- To prevent misunderstandings and to maintain the radio traffic as effective as possible, stick to standardized phraseology and skip slang and of course private messages.
Callsigns and Initial Contact
Every participant on the network has his own Callsign. Controller Positions are identified by their location and their Function (e.g. Wien Radar, Graz Tower), Aircraft either by their Registration (e.g. OE-ALB) or an Airline Callsign followed by a combination of numbers and letters (e.g. AUA25LM, SWR387). The airline is called by its real name (i.e. "Austrian" for AUA). Numbers and letters are spelled using the ICAO-Alphabet.
All conversation follows the following pattern:
- Initial call
- ... messages (there may be pauses, and other messages to other stations)
- handoff/handover.
Initial call
To initiate the contact between two stations an initial call has to be made. This call has the following structure:
Station 1: Station 2, Station 1, Message Station 2: Station 1, Station 2, Message
Example - Austrian 251 is calling Wien Tower:
AUA251: Wien Delivery, Austrian 251, Radiocheck LOWW_DEL: Austrian 251, Wien Delivery, read you 5 by 5
Subsequent messages
Once contact is established, you stay in contact, even if you don't talk to each other. This means: You know that the other station knows of you and counts on you to pick up conversation any time. In Subsequent calls the calling station part can be ommited.
When a controller (or aircraft) transmits a message to a station it is very important that the receiving station acknowledge the message and reads back any required parts.. If the receiving station does not acknowledge, the transmitted message is considered as a lost transmission and the sender should resend the message or check if the receiving station got the message. Items that must always be read back in full are all clearances (including altitudes, headings, speeds, radials etc), runway in use, altimeter setting (QNH or QFE) and transition level, and all frequencies. For a controller, this is extremely important to remember, since if a pilot's readback is incorrect, the controller has to ask for confirmation, i.e a new readback. There are also items that should not be read back to reduce unnesessary radio transmissions. In short, this includes everything not mentioned above, but a few examples are: wind, temperature and other weather information (except altimeter settings) and traffic information in detail. When giving an instruction the Callsign is stated at the beginning, when reading back you usually add it at the end of your transmission (although you are allowed to do it at the beginning too).
Examples:
LOWW_APP: AUA251, turn left heading 290, descend Altitude 5000 feet, QNH 1019. AUA251: Turn left heading 290, descending altitude 5000 feet QNH 1019, AUA251
LOWW_GND: OE-DLT, taxi to Holding Point Runway 29 via Exit 12, M and A1, QNH 1019, give way to Speedbird Airbus A320 crossing you right to left on M. OE-DLT: Taxiing to H/P Rwy 29 via Exit 12, M and A1, giving way to Speedbird Airbus A320 on M, OE-DLT.
METAR and TAF
As a controller, METAR and TAF are the base for clearances: They determine procedures, active runways and even airport closures. When you become a controller, you should be able to understand METAR and TAF. Startign with Study Guide:TWR, you will learn what it means for your decisions as controller.
References for detailed information: METAR, TAF
How is an Aerodrome organized
As airports grew bigger over time also the workload for the Air Traffic Controller handling the traffic got bigger. Soon it was necessary to distribute this workload onto more than one controller in order to be able to cope with the traffic.
So the Tower Position got divided into thre basic types with different areas of responsibility.
- Clearance delivery (DEL), responsible for checking flightplans and issuing IFR clearances to departing aircraft.
- Ground (GND), responsible for all traffic on the apron and the taxiways.
- Tower (TWR), responsible for movements on the runway and within its associated Control Zone.
Because Tower and Ground controllers rely very strongly on what they see out of their window, these are the positions which are situated within the airports control tower.
Apart from that there are the controllers who manage the traffic once it has left the control zone. They are again divided into:
- APP Positions, managing the traffic within the airports vicinity (the so called TMA, Terminal Area). In Austria they are situated directly at the airports.
- ACC (Area Control Center, on VATSIM the abbreviation CTR is used) positions, which are responsible for enroute traffic. They reside in Vienna.
If the air is too crowded, APP and CTR can be divided horizontally (lower and higher APP), vertically (north APP and south APP), or a director responsible for approach spacing - but we won't want to make it too complicated for now. Local procedures and agreements regulate it, how this is done.
- Since they all use their radar to control air traffic, they are also called Radar positions.
Overview: Study Guide - Next: Study Guide:Delivery